

QA/QC - monitoring and data analysis

Karin Sjöberg IVL

The Refresher Training Programme for Malé Declaration Monitoring 25-28 March 2008 AIT, Bangkok, Thailand

QA/QC definitions

Quality Control

the routine use of procedures designed to achieve and maintain a specified level of quality for a measurement system

Quality Assurance

a set of coordinated actions as plans, specifications, and policies used to assure that a measurement program can be quantifiable and produce data of known quality

Quality Assurance

expressed by laboratory personnel at IVL

- is to use common sense in a systematic way
- > makes it more likely to do things correct from the beginning
- > creates confidence

Difference between QC and QA?

Quality control is a system of activities to provide a quality product

Quality assurance is a system of activities to provide assurance that the quality system is performing adequately

 \Rightarrow QA is QC for QC

QA/QC - monitoring

- monitoring site
- monitoring methods
- sample collection and handling (incl.
 - storage)
- analysis
- reporting
- intercomparisons

Monitoring methods for precipitation

- bulk collectors (wet and dry deposition)
- wet-only collectors (wet deposition)

QA/QC for sampling methods may include intercomparisons between

- collectors of same type (bulk or w/o)
- collectors of different types (bulk <u>and</u> w/o)
- bulk/wet-only collectors and standard meteorological gauges (for precipitation amount)

Swedish National Air Quality and Precipitation Monitoring Network

- w/o and bulk samplers in parallell at some sites
- duplicate bulk samplers for inorganic analyses
- triplicate bulk samplers for heavy metals

Rörvik June 2000 - June 2001

	Wet-only	Bulk	dry dep.
	mmol m	$n^{-2} y^{-1}$	%
mm	903	931	(3%)
H^{+}	2.39	2.28	-5%
SO_4^{2-} ex	0.86	0.93	9%
СГ	4.66	5.18	11%
NO ₃ ⁻	2.98	3.01	1%
$\mathrm{NH_4}^+$	2.41	2.68	11%
Ca ²⁺	0.24	0.25	4%
Mg^{2+}	0.49	0.54	11%
Na ⁺	4.26	4.85	14%
K^+	0.13	0.25	87%

bird dropping?

Precipitation monitoring studies in India

Kulshrestha Indian Institute of Chemical Technology, Hyderabad, India Granat and Rodhe, MISU, Sweden Engardt, SMHI, Sweden

Wet-only collectors

 less than 5-10% loss due to delay in lid removal, at sites with moderate wind speeds

Bulk collectors

- usability depends critically on the nature of the surrounding environment, large variations for duplicate samplers can be observed due to local emissions sources
- difference between bulk/wet-only in forested area 30% for Ca²⁺ and 2% for SO₄²⁻

Swedish Environmental Research Institute

Bulk and wet-only data in Japan

no difference in precipitation amount observed

- concentrations of bulk samples higher than those of wet-only samples
 - around 40 % at the urban site
 - around 20 % at the rural site

Operational checks - precipitation

Conductivity of deionized water used for rinsing and cleaning

Wet only collector

- proper rainfall sensor response and operation of lid opening

- mechanical operation of the collector
- lid fits snugly on the collection bucket
- lid is not broken
- battery is charged
- cleanliness of collecting funnel and vessels

Bulk collector

- cleanliness of collecting funnel and vessels
- collection bottle and tubing are wrapped properly with aluminium foil
- no leak between funnel and tubing

Operational checks - air sampling

PM₁₀

- air flow

- undamaged filter
- leakage test

Gas wash bottle - volume of solution

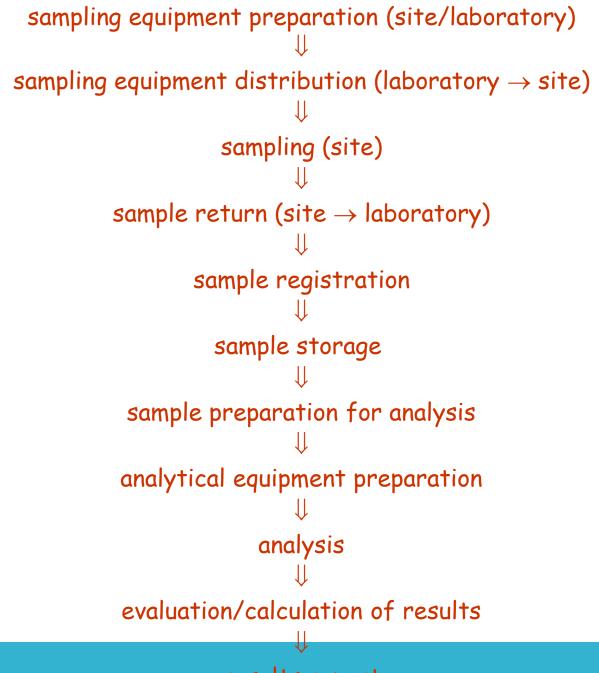
Sample handling

<u>Precipitation</u>

Preservation ?

Storage: cold and dark if possible

Volume measurement at site ?


Contamination of equipment (funnel, volume gauge)? Could be checked with de-ionized water

<u>General</u>

Sample has to be properly sealed and labelled

Any digression should be noted in the sampling protocol that has to be filled in, signed, and returned to the laboratory together with the sample

Swedish Environmental Research Institute

Sample "flow chart"

Swedish Environmental Research Institute results report

An optimal quality system

- \succ is easy to use
- > directs all activities
- comprises complete, but short, descriptions

Important parts of the quality system

- Quality assurance manual (description of the system)
- Choice of method (for sampling, pre-treatment, analysis)
- Training
- Laboratory environment and equipment
- Quality control routines (for temperature, weight, volume, water)
- Routines for sample administration (registring, labelling system, storage)
- Calibration routines, certified standards, intercomparisons, traceability
- Quality control of calculations and results
- Documentation (what has occured)

QUALITY ASSURANCE MANUAL

- 1. Introduction scope, application, references, definitions
- 2. Quality control policy
- 3. Quality assurance system formation, documentation, administration, updating
- 4. Organisation

hierarchy, structure, positions, responsibility for quality control

5. Training

credentials, training program, introduction of new personnel, training in quality control, laboratory safety

6. Routines for receiving samples sample handling, labelling, storage, control of results, report generation

Swedish Environmental Research Institute

QUALITY ASSURANCE MANUAL continued

- 7. Laboratory equipment suitability of lab area, equipment, safety routines, admission to lab, rooms for employees, temperature control
- 8. Sampling methods
- 9. Analytical methods methods directory, choosing methods, introduction of new methods
- 10. Analytical apparatus and material Inventory list, "out of service" labelling, service, repairs, calibration, reference standards
- 11. Verifying results

Internal quality control, intercomparisons, computer routines, judgement of results

12. Reporting

QUALITY ASSURANCE MANUAL continued

- 13. Archiving archiving time, location
- 14. Purchasing
- 15. External resources and co-operation external resources, subcontractors, co-operation woth customer and with accreditation institute
- 16. Diagnostic routines and error checking
- 17. Evaluation and revision of quality assurance program
- 18. Responsibility for damages

CHOICE OF ANALYTICAL METHODS

In choosing an analytical method, one must take into account:

- \cdot sample concentration
- existence of interfering substances
- requirements for accuracy and precision
- time aspect
- available analytical instrumentation
- available reference standards

Analytical methods can be chosen from (listed in order of preference)

- 1. Method specified in national or international control program, or by general directive from state agency
- 2. International or national standard method
- 3. Modified standard method (as long as the modification has been thoroughly tested and verified)
- 4. Method published in international scientific publication
- 5. Method developed by the laboratory itself

IMPORTANT QUALITY CONTROL ROUTINES

It is important when looking at the following list to use common sense - what is the accuracy and precision required by the laboratory; \pm 5%, \pm 15% ?

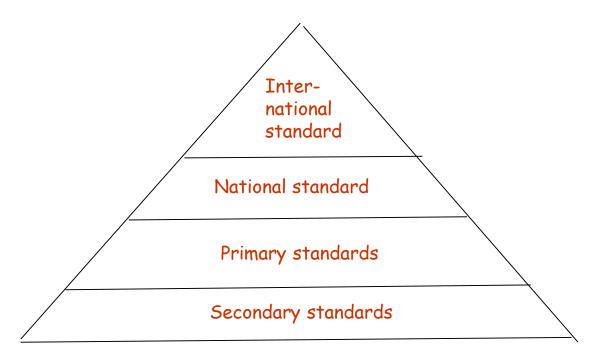
- calibration of:
 - analytical balances
 - thermometers and temp controllers
 - incl.refrigerators, freezers, cold rooms, ovens
 - volumetric glassware, autopipettes, dispensers
- control of:
 - water purity
 - fume hoods
 - laboratory temperature

IMPORTANT QUALITY CONTROL ROUTINES continued

- Reference solutions, certified standards
- Logbooks
- Labelling every sample has a unique code
- Dish washing routines
- Control of data calculations

CALIBRATION

An operation that under specific conditions establishes the relation between;


the value given by an analytical instrument
 the corresponding value of a certified standard

The result of a calibration is documented in a "certificate of calibration", which also includes the uncertainty in the measurements made using the instrument.

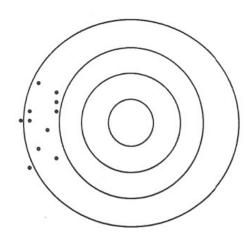
TRACEABILITY

Property of a measurement that means that it can be related to a suitable reference standard, normally national or international, by an unbroken chain of comparisons.

CERTIFIED STANDARD

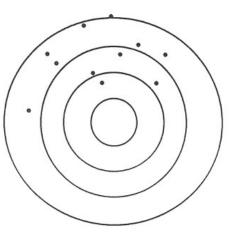
A standard whose value (concentration) has been established by replicate analyses at a number of specially chosen laboratories specialized in the analysis of the standard in question.

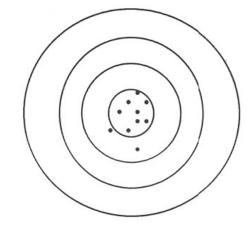

Only certified bodies (for example The National Institute of Standards, NIST, in the US or the Community Bureau of Reference, BCR, in Europe) are authorized to supervise the preparation, analysis, and distribution of certified standards.


INTERNAL QUALITY CONTROL

All chemical analyses are subject to errors that lead to results, deviating more or less from a "true value"

<u>random errors</u> affect analytical precision


<u>systematic errors</u> affect analytical accuracy



poor precision

poor accuracy

poor precision and accuracy

good precision and accuracy

ANALYSIS OF PRECIPITATION SAMPLE

- start with pH, NH_{4^+} , conductivity (before dilution)
- check the conductivity of the de-ionized or distilled water
- use analysis quality of chemicals
- note dates when chemicals were received and first opened
- use ampoules (when possible) to prepare standard solutions
- use mass instead of volume for making dilutions
- check the analytical balance
- make duplicate analysis whenever possible
- always analyse a reference solution
- let the calculations be double checked by another person
- note all verifications in a diary

Deferre	adam dam?	600						
Reference	standard:	F23		number o		8		-
Method		Af		average (2.9874		
Parameter	, conc.	NO3-N	3.000 mg/L			0.002452		
				std. dev. (s):	0.04952		-
Alarm leve	• •	2,888	3.086	%CV:		1.66%		
Action leve	l (X±3s):	2.839	<u>3. 136</u>	difference	from ref.	0.421%		-
	×		03-12-19					-
			03-12-23		date			-
				conc. 2.975	03-12-19	notes (1)	sign.	SH
			03-12-27	2.975	03-12-19	(1)		SH
	×		03-12-31	2.990				nn
				2.967	04-01-20	(1)		nn
			04-01-04	3.031	04-01-21	b		nn
			04-01-08	3.041	04-01-21	(1)		nn
				2.879	04-02-23	(1)		nn
			04-01-12	2.982	04-02-25	(1)		nn
			04-01-18	120.000		(1)		
			04-01-20	120.30		(1)		⊢
) ×		04-01-20	120.40		(1)		1
			04-01-24	120.40		(1)		1
			04-01-28	1791.531		(1)		\vdash
			04-01-28	1791.581		(1)		
			04-02-01	副網		(1)		
			04-02-05	副劇劇		(1)		
				120.30		(1)		
			04-02-09	120.50		(1)		
			04-02-13	120.30		(1)		
			04-02-0	120.30		(1)		
			04-02-17	1201.531		(1)		
			04-02-21	1201.531		(1)		
	×			170.581		(1)		
	· · · · · · · · · · · · · · · · · · ·		04-02-25	120.201		(1)		
			04-02-29	1990,538 ((1)		
				120.531		(1)		
			04-03-04	1201.531		(1)		
			04-03-08	1290,530 ((1)		
				1290,530 ((1)		
			04-03-12	1201.531		(1)		
			04-03-18	1201.531		(1)		
				1201.531		(1)		-
			04-03-20	1201.531		(1)		-
			04-03-24	1201.531		(1)		-
				1201.531		(1)		-
			04-03-28	1 290 A30 E 1 290 A30 E		(1)		-

Internal quality control routines X-CHART

Accuracy and precision in analysis of certified standard

single results plotted about 20 points \rightarrow mean value, std deviation 2 * std deviation \rightarrow alarm level 3 * std deviation \rightarrow action level

mean value < 5% of cert. standard
< 7 points in a row on same side of mean value
< 3 points in a row outside alarm level
no points outside action level

Method:		A1		Detec	tion lim	it mg/L		0.029		-
Paramet	er	nitrate		-	level (i			1.69%	-	-
	of values:	23			•	3.267*F	?% }-	5.53%	-	
		20		710001			(<i>)</i> 0j.	0.0070	-	-
				1					-	
×	×		03-11-27	1:a	2:a	R%	date	notes	sign.	
××			03-12-03	3.509	3.503	0.17%	03-11-27		1	SH
			03-12-09	2.458	2.574	4.61%	03-11-28			SH
×××				1.897	1.901	0.21%	03-12-01			SH
			03-12-15	0.806	0.815	1.11%	03-12-02			SH
×			03-12-21	4.890	4.896	0.12%	03-12-10			SH
				0.218	0214	1.85%	03-12-11			SH
×	· + + + +		03-12-27	0.808	0.815	0.86%	03-12-19	Below det. lim.		SH
			04-01-02	0.811	0.808	0.37%	03-12-29			SH
			04-01-08	2.484	2.493	0.36%	03-12-30			SH
				0.962	0.972	1.03%	04-01-15			Nľ
Χ.			04-01-14	3.696	3.695	0.03%	04-01-20			Nľ
× ×			04-01-20	1.770	1.766	0.23%	04-01-21			N١
	×		04-01-28	3.777	3.823	1.21%	04-01-21	b		NN
* ×				0.418	0.414	0.96%	04-01-22			NN
			04-02-01	0.770	0.791	2.69%	04-01-23			NN
			04-02-07	3.259	3.260	0.03%	04-01-26			NN
				2.413	2.408	0.21%	04-01-27			Nľ
			04-02-13 	0.386	0.382	1.04%	04-01-27	b		NN
			04-02-19	3.352	3.495	4.18%	04-02-24	three new analysis		Nľ
	×××		04-02-25	2.418	2.515	3.93%	04-02-25			Nľ
		Ì		2.451	2.540	3.57%	04-02-25			Nľ
·			04-03-02	3.325	3.472	4.33%	04-02-25			NN
			04-03-08	0.183	0.194	5.84%	04-02-25	three new analysis		NN
			04-03-14	1	1	i	I AI ME			
				1	1	í	1 AL SIE			
			04-03-20	1	1	í	1 AL SIE			
			04-03-26	1	1	1	TALSE			
				1	1	1	I AL SIC			
			04-04-01 	1	1	í	I AL SE			
			04-04-07	í	1	1	LALSE		-	
			04-04-13	í	1	1	1 AJ 590		-	
				í	1	1	1 AU 38 13		-	
			04-04-19	í	1	1	1 AU 38 13			
			04-04-25	1	1	1	1 7 41580		_	
				î	1	1	1. 201 .8900		_	
	8 5 8	5 7 8 9	- 04-05-01	1	1	1	LAL ST	1	1	1

Internal quality control routines R-CHART

precision in analysis of natural samples

duplicate analyses absolute % difference plotted about 20 points \rightarrow mean value (<5%) 3.267 * mean value \rightarrow action level

CHECKING OF RESULTS

Precipitation

- calculate ion balance
- compare measured with calculated conductivity
- contamination ?
 - high NH_4^+ and pH can indicate bird dropping contamination

<u>Air samples</u>

- Is PM₁₀ reasonable?
- Are gas phase concentrations reasonable?

Swedish Environmental Research Institute

	Wet B)					a			<i>a</i>							_				s (EC	C , pH, R1 .	R2 , 1	Preci	pitat	ions)									
	of Labo		Nurra	<u>gar S</u>	tation	1, Sh	amn	agar	, Satk	hira	•							20.30		N	√ _1∕ \ √	•••	- 64											
			Gause	.Ca	laula	tion	hr. a		0.0770		2.0			e or	repol	rter:	WHZ	an, C	nem	ist, n	<u> Aalé Mon</u>	ltorii	ng Su	ацоп	<u>.</u>									
wietno	a coae .		Gause	i:Ca	iicuia	uon	by s	атрі	e amo	ount	3:0	tner				1	ī			1	1	r	1	1		-	1	1	1	1				1
Sample No	5	Samplin	g Period		EC mS/m	fig1	fig2	fig3	pН	fig1	fig2	fig3	R1	figl	fig2	fig3	R2	fig1	fig2	fig3	Amount of Sample(g)	fig1	fig2	fig3	Amount of precipitation (mm)	figl	fig2	fig3	Method code	fig1	fig2	fig3	Date of Analysis	Note
	Sta	rt	En	đ																							1							
	Date	Time		Time																														
1	30.9.5		1.10.5	9:00	-																				\frown				1					No raii
	1.10.5		2.10.5	9:00	-				-												-								1				-	No rai
	2.10.5		3.10.5	9:00	0.0				6.297												100ml				2460ml	-			1				3.10.05	Rain wa
-	3.10.5	9:00	4.10.5	9:00	0.0				5.449									-			100ml			⊢┢	550ml	+	1	1	1				4.10.05	Rain wa
	4.10.5		5.10.5	9:00	0.0				6.729												100ml		1		730ml		1	1	1				5.10.05	Rain wa
	5.10.5		6.10.5	9:00	-				-								1				-				-	1			1				-	No rai
	6.10.5		7.10.5	9:00	-				-								İ 🗌			1	-		1		- I	1	1	1	1				-	No rai
8	7.10.5		8.10.5	9:00	-				-						1		I		1		-		1	T -	- 1		1	1	1				-	No rai
9	8.10.5	9:00	9.10.5	9:00	-				-												-				-				1				-	No rai
10	9.10.5	9:00	10.10.5	9:00	-				-												-				-				1				-	No ra
11	10.10.5	9:00	11.10.5	9:00					-												-				-				1				-	No rai
12	11.10.5	9:00	12.10.5	9:00	-				-												-				-				1				-	No rai
13	12.10.5	9:00	13.10.5	9:00	-				-												-				-				1				-	No rai
14	13.10.5	9:00	14.10.5	9:00	-				-												-				-				1				-	No rai
15	14.10.5	9:00	15.10.5	9:00	-				-												-				-				1				-	No ra
16	15.10.5	9:00	16.10.5	9:00	-				-												-				-				1				-	No ra
17	16.10.5	9:00	17.10.5	9:00	-				-												-				-				1				-	No ra
18	17.10.5		18.10.5	9:00	0.0				5.273												100ml			<u> </u>	520ml				1				18.10.05	Rain w
19	18.10.5		19.10.5	9:00	0.0	Ц			5.927												100ml			μ	1200m1				1				19.10.05	Rain w
20			20.10.5	9:00	0.0	μ			5.369						<u> </u>		L		<u> </u>	<u> </u>	100ml		<u> </u>	Ц	1530ml				1				20.10.05	Rain w
	20.10.5		21.10.5	9:00	0.0	┦┛┥			6.301									<u> </u>			100ml		<u> </u>	μ	2160ml			<u> </u>	1				21.10.05	Rain w
	21.10.5		22.10.5	9:00	-	┦┛┥			-									<u> </u>			-		<u> </u>	μ_			<u> </u>	<u> </u>	1				-	No ra
	22.10.5		23.10.5	9:00	0.0	╢─┤			7.227									<u> </u>		 	100ml		<u> </u>	┥┥	750ml			<u> </u>	1				23.10.05	Rain w
	23.10.5		24.10.5	9:00	0.0	╢─┤			5.976												100ml			+	730ml	+			1				24.10.05	Rain w
-	24.10.5		25.10.5	9:00	0.0	╢─┤			5.568												100ml			\vdash	1210m1	+			1				25.10.05	Rain wa
	25.10.5		26.10.5	9:00	-	╢─┤			-									<u> </u>			-			+		-			1				-	No ra
	26.10.5		27.10.5	9:00 9:00	-				-												-				<u> </u>	+			1				-	No ra
	27.10.5		28.10.5		-				-												-				<u>↓</u>	+			1				-	No ra
	28.10.5 29.10.5		29.10.5	9:00	+				-												-					+	+			$ \vdash $			-	No ra
	_,		30.10.5	9:00	ΗΨ				-												-				-	+							-	No rai
31	30.10.5	9:00	31.10.5	9:00	-				-												-				-		1	1	1	1			-	No rai

EC is not measured, sometimes -, sometimes 0!

Amount should be expressed in mm! Automatic formulas could be there in the template.

Bulk or wet-only?

DATA REPORTING FOR BULK COLLECTOR

Site name : Bhur, Gelephu Bhutan, Bhutan

Name of Laboratory :

G 1		Samplin	g period		EC				pН				R1				R2	
Sample No.	Start		End		EC	flg1	flg2	flg3	pm	flg1	flg2	flg3	KI	flg1	flg2	flg3	K2	flg1
1101	Date	Time	Date	Time	mS/m													
	05-jul-03	11:30	06-jul-03	11:30	0.43				6.78									
	06-jul-03	10:30	07-jul-03	11:30	0.61				5.85									
	07-jul-03	10:30	08-jul-03	10:00	0.56				6 22									
	08-jul-03	10:30	09-jul-03	10:00	0.35				6.06									
	09-jul-03	10:30	10-jul-03	10.00	0.69				6.16									
	10-jul-03	10:30	<u>11-jul-03</u>	10:00	0.68				6.92									
	11-jul-03	10: 30	12-jul-03	10:00	0.18				6.38									
	<u>12 jul-03</u>	10:30	13-jul-03	10:00	0.41				7.47									

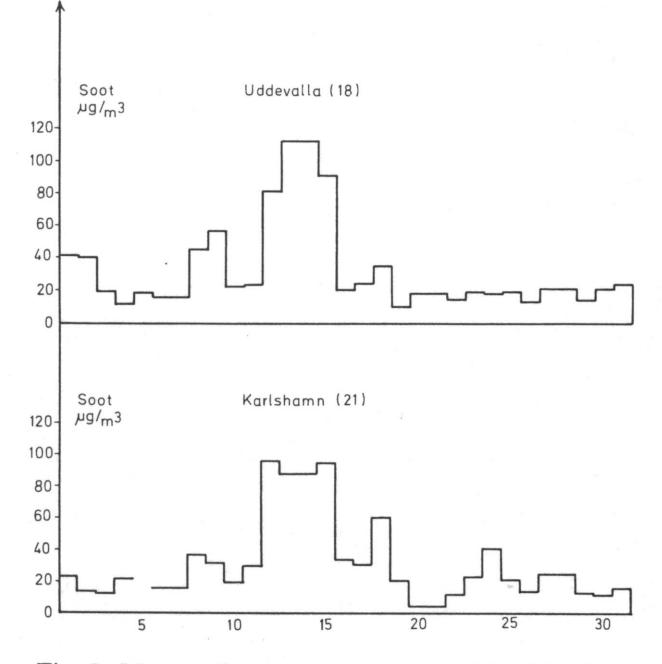
Results of wet deposition analysis(EC, pH, R1, R2, Precipitation)

DATA REPORTING FOR WET ONLY COLLECTOR

Form Wet W No.3

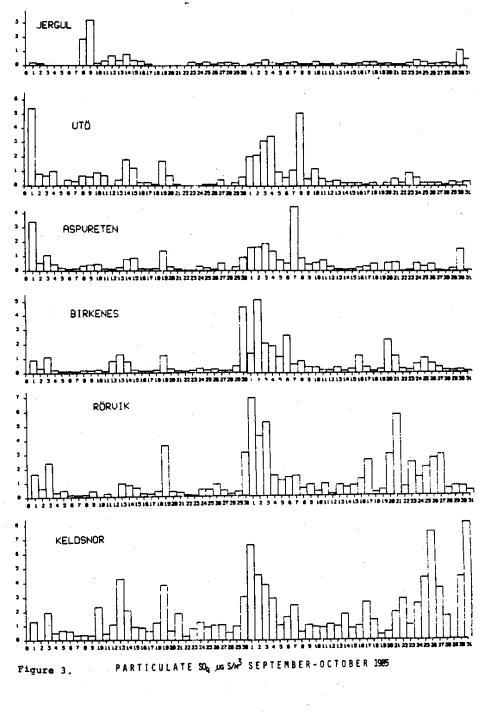
Results of wet deposition analysis(EC, pH, R1, R2, Precipitation)

pH in bulk collector lower than in wet-only


Site name : Bhur, Gelephu, Bhutan

Name of Laboratory :

G		Sampling	g period		EC				pН				R 1				R2	
Sample No.	Start		End		EC	flg1	flg2	flg3	рп	flg1	flg2	flg3	K1	flg1	flg2	flg3	K2	flg1
1101	Date	Time	Date	Time	mS/m													
	06-jul-03	10:30	07-jul-03	11:30	0.87				6.16									
	07-jul-03	10:30	08-jul-03	10:00	0.58				0.54									
	08-jul-03	10:30	09-jul-03	10:00	0.33				7.56									
	09-jul-03	10:30	10-jul-03	10:00	0.43				6.23									
	10-jul-03	10:30	11-jul-03	10:00	0.77				6.85									
	11-jul-03	10:30	12-jul-03	10:00	0.23				6.66									
	12-jul-03	10:30	13-jul-03	10:00	0.39				7.35									
	13-jul-03	10:30	14-jul-03	10:00	0				0									
	22-jul-03	10:30	23-jul-03	10:00	0.68				6.13									
	19-aug-03	10:30	20-aug-03	11:30	0.53				5.98									



Examples of long range transport

Swedish Environmental Research Institute Fig. 2. Mean daily soot values in $\mu g/m^3$ for March 1965 from Uddevalla [18] (7 stations) and Karlshamn [21] (6 stations).

Examples of long range transport

Swedish Environmental Research Institute ne:Institue of Agriculture and Animal Science (IAAS), Rampur, Chitwan. f Laboratory:IAAS, Soil Laboratory

µg/m3

Sampling period														
period														
Start		End		Manometer reading(m3/		Time totalizer		Wt. of filter paper(gm)		Wt. of Dust Cup(gm)		Concentratio n (mg/m3)		
		_		min)		reading(hrs)								
Date	Time	Date	Time	Initial	Final	Initial	Final	Initial	Final	Initial	Final	PM10	NRSPM	TSPM
2007-01-11	11:10		11:10		1.19			2.7319		17.2496	17.2764	58		
2007-01-12	11:20		11:20		1.18			2.7251	2.8408	17.3727	17.4029		20	
2007-01-13			11:30		1.18			2.7399		17.3018	17.3313			
2007-01-14			11:40		1.16			2.7532		17.3648	17.4090			
2007-01-16			11:20		1.17	5947.14		2.7456		17.4258	17.4953			175
2007-01-17			11:30		1.16		5990.70	2.7400		17.3764	17.4035	117	18	
2007-01-18					1.16			2.7467	2.9483	17.2514	17.2831	125		
2007-01-22	11:10		11:10		1.19		6063.16	2.7367	2.9375	17.4489	17.4683	119		131
2007-01-24			11:20		1.17	6063.16		2.7356		17.3258	17.3405	98	10	
2007-01-25	11:30	2007-01-26	11:30	1.22	1.15	6057.31	6080.27	2.7539	2.9156	17.4553	17.4725	99	11	110
2007-02-01														
2007-02-01														
2007-02-01														
2007-02-01														
2007-02-01														
2007-02-01														
2007-02-01														
2007-02-01														
2007-02-01														
2007-02-01														

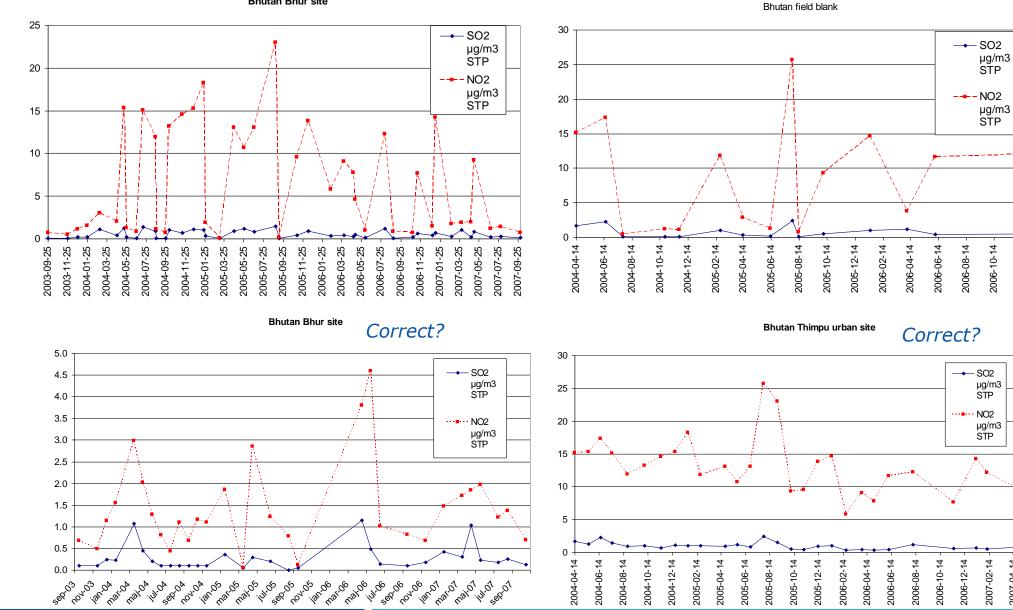
Very high concentrations of PM10 for being a background site! Is there any explanation for this? The unit mg/m³ should be μ g/m³ ?Still the particle concentrations are high.

QA/QC FOR DIFFUSIVE SAMPLERS

- Comparisons between diffusive samplers and active monitoring techniques
- Intercomparisons between different diffusive samplers

DATA CHECKING - Diffusive samplers

		Temp		O ₂ m ³	NO ₂ µg/m ³	O ₃ µg/m ³	
Station	Start time Sto	op time C	; S	TP *	STP *	STP	* Remarks
Nepal, Stn 1	2003-03-25 12:00 2003-0	6-07 12:00 20.0	0.6		6.4		
Nepal, Stn 1	2003-03-25 12:00 2003-0	6-07 12:00 20.0	0.9		6.7		
Nepal, Stn 1	2003-06-07 12:00 2003-0	7-31 12:00 20.0	0.3		2.8		
Nepal, Stn 1	2003-07-31 12:00 2003-0	9-15 12:00 20.0	0.2		1.5		
Nepal, Stn 1	2003-09-10 12:00 2003-1	0-12 12:00 20.0) <0.2	b	2.9		
Nepal, Stn 1	2003-10-12 12:00 2003-1	1-09 12:00 20.0	<0.2	b	9.8		
Nepal, Stn 1	2003-11-09 12:00 2003-1	2-09 12:00 20.0	<0.2	b	0.2		NO2 very low, unexposed??
Nepal, Stn 1	2003-12-09 12:00 2004-0	1-11 12:00 20.0) 1.2		16.2		2 months exposure? Nov-Jan?
Nepal, Stn 1	2004-03-01 09:00 2004-0	4-01 08:45 20.0) 2.5		9.1		
Nepal, Stn 1	2004-04-01 08:45 2004-0	5-01 08:45 20.0) 1.1		7.5		


DATA CHECKING - Diffusive samplers

			Temp	SO ₂ µg/m ³	_	NO ₂ µg/m ³	O ₃ µg/m ³	
Station	Start time	Stop time	С	STF) *	STP *	STP *	Remarks
Maldiv., Stn 4	2007-04-30 10:00	2007-05-31 10:00	31.0	<0.2	b	0.4	36	
Maldiv., Stn 4	2007-05-31 10:00	2007-06-30 10:00	31.0	0.3		0.3	33	
Maldiv., Stn 4	2007-06-30 10:00	2007-07-31 10:00	30.0	<0.2	b	0.4	36	
Maldiv., Stn 4	2007-07-31 10:00	2007-08-31 10:00	28.0	<0.2	b	0.5	27	
Maldiv., Stn 4	2007-08-31 10:00	2007-09-30 10:00	30.0	<0.2	b	0.3	61	O3:Sampler old (from 05-03). Results very uncertain. O3:Sampler old (from 2005-02). Results very uncertain. NO2:Holder broken, filter
Maldiv., Stn 4	2007-09-30 10:00	2007-10-31 10:00	30.0	<0.2	b	0.3	63	on land 1/10.
Maldiv., Stn 4	2007-10-31 10:00	2007-11-30 10:00	31.0	0.4		1.0	48	
Maldiv., Stn 4	2007-12-31 10:00	2008-01-31 10:00	29.0	0.8		1.1	50	

DATA CHECKING - Diffusive samplers

Bhutan Bhur site

2006-12-14

2007-04-14

Swedish Environmental Research Institute